您现在的位置是: 首页 > 写作指导 写作指导

初中数学说课稿_初中数学说课稿模板一等奖

zmhk 2024-06-01 人已围观

简介初中数学说课稿_初中数学说课稿模板一等奖       好的,现在我来为大家谈一谈初中数学说课稿的问题,希望我的回答能够解答大家的疑惑。关于初中数学说课稿的话题,我们开始说说吧。1.初中数学《相似三角形》说课稿2.初中数学说课稿3.初中数学说课稿:《数轴

初中数学说课稿_初中数学说课稿模板一等奖

       好的,现在我来为大家谈一谈初中数学说课稿的问题,希望我的回答能够解答大家的疑惑。关于初中数学说课稿的话题,我们开始说说吧。

1.初中数学《相似三角形》说课稿

2.初中数学说课稿

3.初中数学说课稿:《数轴》

4.《矩形的判定》初中数学说课稿

5.二次函数说课稿

初中数学说课稿_初中数学说课稿模板一等奖

初中数学《相似三角形》说课稿

        初中数学《相似三角形》说课稿

一.教材分析

       

(一)教材的地位和作用

        相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习三角函数及与固有关的比例线段等知识打下良好的基础。

        本节课是为学习相似三角形的判定定理做准备的,因此学好本节内容对今后的学习至关重要。

(二)教学的目标和要求

        1.知识目标:理解相似三角形的概念,掌握判定三角形相似的预备定理。

        2.能力目标:培养学生探究新知识,提高分析问题和解决问题的能力,增进发放思维能力和现有知识区向最近发展区迁延的能力。

        3.情感目标:加强学生对斩知识探究的兴趣,渗透几何中理性思维的思想。

(三)教学的重点和难点

        1.重点:相似三角形和相似比的概念及判定三角形相似的预备定理。

        2.难点:相似三角形的定义和判定三角形相似的预备定理。

二、教法与学法

        采用直观、类比的方法,以多媒体手段辅助教学,引导学生预习教材内容,养成良好约自学才惯,启发学生发现问题、思考问题,培养学生逻辑思维能力。逐步设疑,引导学生积极参与讨论,肯定成绩,使其具有成就感,提高他们学习约兴趣和学习的积极性。

        三、教学过程的分析

        看我国国旗,国旗上约大五角星和小五角星是相似图形。本节课要学习的新知识是相似三角形,准备分四个步骤进行。

        1. 关于相似三角形定义的学习,是从实践中总结得出定义的两个条件,培养学生观察归纳的思维方法,从感性认识转化为理性认识。我准备用三角形的中位线定理引入,让学生动手画一个具有三角形中位线的三角形,然后问:三角形的中位线所截得的三角形与原三角形的各角有什么关系?各边有什么关系?再从中位线所在的直线上下平移进行观察,想一想怎么回答。学生容易由学过的知识得出:所截得的三角形与原三角形的“对应角相等,对应边成比例”,最后指明具有这两个特性的两个三角形就叫做相似三角形。这一段教学方法的设计是要培养学生的.动手能力和观察能力。并逐步培养从具体到抽象的归纳思维能力。将所截得的三角形移出记为 △ABC,原三角形记为△A'B'C'。因此,如果有:

        ∠A=∠A',∠B=∠B',∠C=∠C',

        那么△ABC与△A'B'C'是相似的。以此来加强两个三角形相似定义的认识。

        2. 关于用相似符号“∽”来表示两个三角形相似时,考虑与全等三角形的全等符号“≌”表示相类比引入。全等符号“≌”可看成由形状相同的符号“∽”和大小相等的符号“=”所合成,而相似形只是形状相同,所以只用符号“∽”表示,这样的讲法是格数学符号形象化了。学生会比较容易记住,是否可以,请同行们提意见。必须注意:用相似符号“∽”表示两个三角形相似,书写时应把对应顶点写在对应位置上。例如,在两个相似三角形中,其顶点D与A对应,E与B对应,F和C对应,就应写成△ABC∽△DEF,而不能任意写成△ABC∽△FDE。把对应顶点写在对应位置上的问题,在以后的解题中常常显示出它的重要性。根据相似三角形约定义可知:

        如果两个三角形相似,那么它们的对应角相等,对应达成比例。在由相似来判断它们的对应角及对应边时,如果其对应项点是按对应位置书写的,那么这个判断就准确而且迅速。如△ABC∽△DEF,则AB、BC、AC就分别与DE、EF、DF相对应,∠A、∠B、∠C就分别与∠D、∠E、∠F相对应。这样就可避免产生混乱和错误。对学生也是一种思维方法的训练,引导学生考虑问题时要有条理和方法。在判断相似三角形的对应边及对应角时,还常用另外一种方法,即:对应角的夹边是对应边。对应边的夹角是对应角。

        3. 关于相似比概念的教学,应向学生讲清:如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比 (或相似系数),这里,必须注意的是顺序问题和对应问题。例如:△ABC∽△DEF,那么是△ABC与△DEF的相似比,而是指△DEF与△ABC的相似比,而这两相似比互为倒数。由此可说明全等三角形是相似三角形当相似比等于l时约特殊情况。

        4. 在教学预备定理前,可先复习上节课学习的P215页例6的结论[平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例。]对命题的引出,可以先画出一个三角形,然后作出平行于其中一边,并且和其他两边相交的直线,使学生直观地得到:所截得的三角形与原三角形相似,从而引出命题“平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”。即如图,若DE∥BC,则 △ADE∽△ABC,然后分析命脉题的结论是要证明两个三角形相似。可以问学生:

        当没有判定两个三角形相似约定理的情况下,应考虑利用什么方法来证明相似?如获至宝果用定义来证,应从哪几个方面来证?然后按教材内容给出证明。强调指出每个比的前项是同一个三角形的三边,而比的后项为另一个三角形的三边,位置不能写错。

        因此我们可得(预备)定理:

        定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

        以教材的内容为出发点,启动学生自发学习,引导学生探究思维,以达知识目标。为了巩固本节保所学的知识,安排课堂练习,之后进行提问与调板,了解学生掌握知识的情况。

;

初中数学说课稿

        8年级数学说课稿《一次函数的图像》

        初中数学《一次函数的图像》说课稿怎么写?下面我整理收集了一篇范文供大家参考!希望大家喜欢!

       

        初中数学说课稿《一次函数的图像》

        根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析,教学目标分析,教学方法分析,教学过程分析,教学评价六个方面加以说明。

        一.教材分析

        1.教材的地位和作用

        本节教材是初中数学 8年级(下)第18章第3节第二课时的内容,函数是数学中重要的基本概念之一,也是初中数学的重要内容之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。第18章,既是学生函数的入门,也是进一步学习的基础。

        作为本节内容,一方面,这是在学习了《变量与函数》、《函数的图像》的基础上,对函数意义的进一步深入和拓展;另一方面,又为学习《一次函数的性质》等知识奠定了基础,是进一步研究现实世界中数量关系的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

        2.教学重难点

        根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:一次函数与正比例函数概念、图像的理解;难点确定为:k、b的取值与一次函数图像位置的关系。

        二.学情分析

        从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的关注或表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

        从认知状况来说,学生在此之前已经学习了《变量与函数》、《函数的图像》,对函数的意义已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于函数图像的理解,由于其抽象程度较高,学生可能会产生一定的困难,所以教学中应注意发展学生数形结合的思想。

        三.教学目标分析

        新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感、态度、价值观目标这三个方面,而这三维目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程同时也是学生学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把这两者充分体现在过程与方法中。

        1.知识与技能

        理解一次函数和正比例函数的图象是一条直线,熟练地作出一次函数和正比例函数的图象,掌握 k与b的取值对直线位置的影响。

        2.过程与方法

        经历一次函数的作图过程,探索某些一次函数图象的异同点;

        3.情感态度与价值观

        体会用类比的思想研究一次函数,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂.

        四.教学方法分析

        现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的?最近发展区?设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的知道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

        五.教学过程分析

        新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

        (一)创设情境

        前面我们学习了用描点法画函数的图象的方法,下面请同学们根据画图象的步骤:列表、描点、连线,在同一平面直角坐标系中画出下列函数的图象。

        (1)y=-1/2x ;(2)y=-1/2x+2; (3) y=3x;  (4) y=3x+2。

        教学说明:

        第一步、对于函数(1)应结合以前函数图像的作法详细讲解。特别注意学生在列表取值,平面直角坐标系的正方向、单位长度,描点的正确性等学生作图的易错点。

        第二步、学生自主完成函数(2)的图像。

        第三步、同学们观察并互相讨论,并回答:你所画出的图象是什么形状?

        一次函数y=kx+b(k?0)的图象是一条直线,这条直线通常又称为直线y=kx+b(k?0).又因为两点可以确定一条直线,所以今后画一次函数图象时只要取两点,过两点画一条直线就可以了。

        第四步、学生用两点法作出函数(3)(4)的图像。

        观察上面四个函数的图象,发现它们都是直线.请同学举例对他们的发现作出验证。

        设计意图:教学应从学生已有的知识体系出发,作函数图像是本节课深入研究一次函数y=kx+b(k?0)的图象的认知基础,这样设计有利于引导学生顺利地进入学习情境。

        (二)探究归纳

        再观察上面四个函数的图象,也就是k、b的取值与一次函数图像位置的关系:

        (1) y=-1/2x+2是由直线y=-1/2x向上移动2个单位得到的;而直线y=3x+2是由直线y=3x分别向上移动2个单位得到的。

        (2) y=-1/2x+2与y=3x+2的交点在同一点,是因为两条直线的b相同;即直线与y轴的交点纵坐标取决于b。

        由此得出结论,两个一次函数,当k一样,b不一样时有共同点:直线平行,都是由直线y=kx(k?0)向上或向下移动得到;

        不同点:它们与y轴的交点不同。

        而当两个一次函数,b一样,k不一样时,有共同点:它们与y轴交于同一点(0,b);不同点:直线不平行。

        补充说明:由于上述函数只有b>0的情况,不能体现将正比例函数向下平移,因此我在教学中让学生自主完成了b<0时的图像以利于学生理解图像向下平移的情况。

        设计意图:现代数学教学理论认为:教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳使学生有一个完整的.知识形成过程。

        (三)实践应用

        1.完成课本例1

        注意引导让学生讨论、交流,及时反馈知识在实际中的应用。

        2.完成课后练习

        设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,体现新课标提出的让更多的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

        (四) 小结归纳,拓展深化

        我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,应从学习的知识、方法、体验几个方面进行归纳,我设计了这么三个问题:

        ① 通过本节课的学习,你学会了哪些知识;

        ② 通过本节课的学习,你最大的体验是什么;

        ③ 通过本节课的学习,你掌握了哪些学习数学的方法?

        (五)布置作业,提高升华

        以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

        以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。

        六.教学评价

        本课教学注意挖掘教材,体现学生的主体地位;同时以问题为载体,探究为主线,有意识地留给学生适度的思维空间,从不同视角上展示不同层次学生的学习水平,使传授知识与培养能力融为一体。说课对我来说仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见,谢谢大家!

;

初中数学说课稿:《数轴》

       七年级上册 有理数的减法 说课稿本文地址: /teacher/shuoke/czshuxue/37350.html一、教材分析:

       《有理数的减法》是北师大版《数学》实验教科书七年级上册第二章第五节的内容.

       “数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算.本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算.通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础.

       鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下:

       1、知识目标:

       经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算.

       2、能力目标:

       经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想.

       3、情感目标:

       在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习.

       为了实现以上教学目标,确定本节课的教学重点是:有理数的减法法则的理解和运用.教学难点是:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题.

       二、学情分析:

       我们面对的教学对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张“白纸”,因此关注学生的情况对教学是十分有必要的.

       在生活中学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面;在小学阶段学生进一步学习了作为“数的运算”的减法运算,但这种减法运算的学习很大程度上的是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在.因此在教学中一方面要利用这些既有的知识储备作为知识生长的“最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义.

       此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强.因此在教学过程中要做好调控.

       [NextPage]

       三、教法选择及学法指导:

       《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者.基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导——发现法”组织教学.其基本程序设计为:创设情境——提出猜想——探索验证——总结归纳——反馈运用.

       上述教学程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的.本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从列举特例到归纳(不完全归纳)出一般的减法法则的全过程,体验知识产生和发展的全过程.

       四、过程分析:

       教学环节

       教 学 活 动 设 计

       设 计 说 明

       创

       设

       情

       境

       自

       然

       引

       入

       1、首先与学生互动谈论合肥本地今日的气温,了解合肥今天的最高气温和最低气温。提问:合肥今天的温差是多少度?你是怎样计算的? P S D . W Y R J . C O M 

《矩形的判定》初中数学说课稿

        初中数学说课稿:《数轴》

        说课活动分课前说课和课后说课两种形式,不论是课前说课还是课后说课上述内容必须阐述清楚。课前说课还应说疑点,说明在备课中自己拿不准的疑点,求教于其他教师。课后说课还应包括?学生学得怎样?的教学效果评估。以下是我为大家收集得初中说课稿《数轴》,欢迎大家阅读!

       

        初中数学说课稿:《数轴》

        老师们:您们好!

        我说课的内容是 "数轴"的第一课时内容.

        一:教材分析:

        本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低

        这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题.数轴不仅是学生学习相反数,绝对值等有理数知识的重要工具,还是以后学好不等式的解法,函数图象及其性质等内容的必要基础知识.

        二:教学目标:

        根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下:

        1. 使学生理解数轴的三要素,会画数轴.

        2. 能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示

        3. 向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣.

        三:教学重,难点:

        正确理解数轴的概念和有理数在数轴上的表示方法是本节课的教学重点,建立有理数与数轴上的点的对应关系(数与形的结合)是本节课的教学难点.

        四:教材分析:

        ⑴知识掌握上,七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述.

        ⑵学生学习本节课的知识障碍.学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中丢三落四的现象,所以教学中教师应予以简单明白,深入浅出的分析.

        ⑶由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;

        由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动,有趣,高效,特将整节课以观察,

        思考,讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生"多观察,动脑想,大胆猜,勤钻研"的研讨式学习方法.教学中积极利用板书和练习中的图形,向学生提供更多的活动机会和空间,

        使学生在动脑,动手,动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想.

        为充分发挥学生的主体性和教师的主导辅助作用,教学过程中设计了七个教学环节:

        (一),温故知新,激发情趣

        (二),得出定义,揭示内涵

        (三),手脑并用,深入理解

        (四),启发诱导,初步运用

        (五),反馈矫正,注重参与

        (六),归纳小结,强化思想

        (七),布置作业,引导预习

        五:教学程序设计:

        (一),温故知新,激发情趣:

        首先复习提问:有理数包括那些数 学生回答后让大家讨论:你能找出用刻度表示这些数的实例吗 学生会举出很多例子,但是由于温度计与数轴最为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计,并提问:

        (1)零上5?C用 5 表示.

        (2)零下15?C 用 -15 表示.

        (3)0?C 用 0 表示.

        然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上的点表示正数,负数和0呢 答案是肯定的,从而引出课题:数轴.结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备.

        (二),得出定义,揭示内涵:

        教师设问:到底什么是数轴 如何画数轴呢

        (1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读,画方便,同时也为了有美的感觉.)

        (2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为正方向是习惯与

        方便所作,由于我们只能画出直线的一部分,因此标上箭头指明正方向,并表示无限延伸.)

        (3)选取单位长度,标数(这里说明任选适当的长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1,2,3?负数反之.单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同.)

        由于画数轴是本节课的教学重点,教师板书这三个步骤,给学生以示范.

        画完数轴后教师引导学生讨论:"怎样用数学语言来描述数轴 "(通过教师的亲切的语言启发学生,以培养师生间的默契)

        通过讨论由师生共同得到数轴的定义:规定了原点,正方向和单位长度的直线叫做数轴.

        至此,我们将一个具体的事物"温度计"经过抽象而概括为一个数学概念"数轴",使学生初步体验到一个从实践到理论的认识过程.

        (三),手脑并用,深入理解:

        1,让学生讨论:下列图形哪些是数轴,哪些不是,为什么

        A,

        B,

        C,

        D,

        E,

        F,

        A,B,C三个图形从数轴的三要素出发,D和F是学生可能出现的错误,给学生足够的观察,思考的时间然后展开充分的讨论,教师参与到学生的讨论之中去接触学生,认识学生,关注学生.

        2,为进一步强化概念,在对数轴有了正确认识的基础上,请大家在练习本上画一个数轴,(请同学画在黑板上)

        学生在画数轴时教师巡视并予以个别指导,关注学生的个体发展,画完后教师给出评价,如"很好""很规范""老师相信你,你一定行"等语言来激励学生,以促进学生的发展;并强调:原点,正方向和单位长度是数轴的三要素,画数轴时这三要素缺一不可.

        我设计以上两个练习,一个是动脑想,通过分析,判断正误来加深对正确概念的理解;一个是通过动手操作加深对概念的理解.

        (四),启发诱导,初步运用:

        有了数轴以后,所有的有理数都可以表示在数轴上,那么反过来,数轴上的点是否只表示有理数呢 作为一个问题我让学生去思考,为后面实数的学习埋下伏笔,这里不再展开.

        安排课本23页的例1,

        利用黑板上的`例题图形让学生来操作,教师提出要求:

        1,要把点标在线上 2,要把数标在点的上方

        通过学生实际操作,可以加深对数轴的理解,进一步掌握用数轴上的点表示数的方法,

        同时激发学生的学习兴趣,调动学生的积极性,从而使学生真正成为教学的主体.

        当然,此题还可以再说出几个有理数让学生去标点,好让更多的学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加深对数形结合思想的理解.

        (五),反馈矫正,注重参与:

        为巩固本节的教学重点让学生独立完成:

        1,课本23页练习1,2

        2,课本23页3题的(给全体学生以示范性让一个同学板书) 为向学生进一步渗透数形结合的思想让学生讨论:

        3,数轴上的点P与表示有理数3的点A距离是2,

        (1)试确定点P表示的有理数;

        (2)将A向右移动2个单位到B点,点B表示的有理数是多少

        (3)再由B点向左移动9个单位到C点,则C点表示的有理数是多少

        先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力.

        (六),归纳小结,强化思想:

        根据学生的特点,师生共同小结:

        1,为了巩固本节课的教学重点提问:你知道什么是数轴吗 你会画数轴吗 这节课你学会了用什么来表示有理数

        2,数轴上,会不会有两个点表示同一个有理数 会不会有一个点表示两个不同的有理数

        让学生牢固掌握一个有理数只对应数轴上的一个点,并能说出数轴上已知点所表示的有理数.

        (七),布置作业,引导预习:

        为面向全体学生,安排如下:

        1,全体学生必做课本25页1,2,3

        2,最后布置一个思考题:

        与温度计类似,数轴上两个不同的点所表示的两个有理数大小关系如何

        (来引导学生养成预习的学习习惯)

        六:板书设计:(略)

        总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主,探究,合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好教师.

        以上是我对本节课的设想,不足之处请老师们多多批评,指正,谢谢!

;

二次函数说课稿

        《矩形的判定》初中数学说课稿

        各位评委、各位老师:

       

        你们好!本日我要为各人讲的课题是《矩形的判断》,凭据新课标理念,对应本节,我将以教什么、怎样教以及为什么如许教为思绪,从课本阐发、讲授目的阐发、讲授计谋阐发、讲授历程阐发四个方面加以阐明。

一、教材分析(说教材):

        1、教材所处的地位和作用:本节教材是初中一年级第二册,第19章《四边形》的第二节的内容,是初中教学的重要内容之一。一方面这是在学习了不等式的基础上,对不等式的进一步深入和拓展;另一方面,又为学习不等式组等知识奠定了基础,是进一步研究不等式的工具性内容。因此我认为本节起着承前启后的作用。

        2、教学目标:1、通过探索和交流使学生逐步得出矩形的判定方法,使学生亲身经历知识发生发展的过程,并会用判定方法解决相关的问题。2、通过探究中的猜想、分析、类比、测量、交流、展示等手段,让学生充分体验得出结论的过程,让学生在观察中学会分析,在操作中学习感知,在交流中学会合作,在展示中学会倾听。培养学生合情推理能力和逻辑思维能力,使学生在学习中学会学习。3、使学生经历探究矩形判定的过程,体会探索研究问题的方法,使学生在数学活动中获取成功的体验,增强自信心。

        3、教学重点、难点:教学重点:掌握矩形的判定方法及证明过程教学难点:矩形判定方法的`证明以及应用

        下面为了讲清重点和难点,使学生达到本节课的教学目标,我再从教法和学法上谈谈:

二、教学策略(说教法):

        1、教学手段:通过动手实践、合作探索、小组交流,培养学生的的逻辑推理、动手实践等能力。

        2、教学方法及其理论依据:通过探索与交流,逐渐得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题。通过开放式命题,尝试从不同角度寻求解决问题的方法。

三、教学过程

        环节一:创设情境、导入新课

        通过上节课对矩形的学习,谁能告诉我矩形是怎样定义的?(通过对矩形定义的回顾,引出判定矩形除了定义外,还有哪些方法,导入新课。)

        回顾:1、矩形的定义:有一个角是直角的平行四边形叫矩形2、矩形的性质:对边:对边平行且相等。对角:四个角相等,都是直角。对角线:互相平分且相等。3、平行四边形的性质:

        平行四边形的性质 平行四边形判定

        平行四边形两组对边分别相等

        平行四边形两组对边分别平行 两组对边分别平行(或相等)的四边形是平行四边形

        平行四边形一组对边平行且相等

        平行四边形对角线互相平分 一组对边平行且相等的四边形是平行四边形

        对角线互相平分的四边形是平行四边形

        平行四边形两组对角分别相等 两组对角分别相等的四边形是平行四边形

        环节二:尝试发现,探索新知:活动一:学生分成学习小组,限定仅用手中量角器尝试判定课前准备好的四边形纸板是否为矩形纸板,并说明理由。(此问题的解决以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的定义,得出矩形的判定定理一。教师以合作者的身份深入到小组中,与学生交流,了解学生的探究进程并适当给予点拨。)活动结束,由小组代表汇报交流结果,并可适当板书进行推证、讲解。在此过程中,全体同学可互相补充、互相评价,培养学生的语言表达能力、推理能力。

        活动二:学生分成学习小组,限定仅用直尺尝试判定课前准备好的平行四边形纸板是否为矩形纸板,并说明理由。(此问题的解决仍以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的判定定理一,得出矩形的判定定理二。)通过此种互动过程,让全体学生参与其中,获得不同程度的收获,体验成功的喜悦。

        定理一、定理二得出后,总结矩形的三种判定方法,并对题设进行比较、区分,使学生进一步明确定理应用的条件。(学生比较,归纳。)

        环节三:应用辨析,巩固定理

        总结:矩形判定方法1有一个角是直角的平行四边形是矩形矩形判定方法2有三个角是直角的四边形是矩形。

        矩形判定方法3对角线相等的平行四边形是矩形。为了帮助学生巩固定理,应用定理,练习如下:

        一、判断题:1、四个角都相等的四边形是矩形2、对角线相等的四边形是矩形。3、对角线互相平分且相等的四边形是矩形。4、一组对角互补的平行四边形是矩形。

        二、填空题:

        1、若四边形ABCD的对角线AC、BD相等,且互相平分于O,则四边形ABCD是_形,若∠AOB=60,那么AB:AC=_,若AB=4cm,BC=_cm,矩形ABCD的面积为_。

        2、两条平行线被第三条直线所截,两组同旁内角的平分线相交所成的四边形是_形。习题设置原则及解决方法说明:

        判断题的设计加强学生对所学定理的理解和掌握,使学生能将给出的条件转化为应用定理所需的条件,辨析判定定理的题设,以便更好地应用定理。填空题第一题是对教材例2的改编,第二题是对教材习题的改编,这两个问题的解决分别应用所学定理,使学生能够学习致用。这两道题的解决方法是先采用独立完成形式,有困难的学生可以求助老师或同学,学生互助完成,派学生代表板书讲解。

        环节四:开放训练,发散思维

        变式训练

        如图,△ABC中,点O是AC边上的一个动点,

        过点O作直线MN∥BC,设MN交∠BCA的

        平分线于点E,交∠BCA的外角平分线于点F。

        (1)求证:EO=EF(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论。

        变式训练的设置,旨在发散学生的思维,使不同层次的学生都能有所收获,而移动、旋转等问题也是近年中考的热点。学生思考、讨论完成,教师适当点拨,加以讲解。

        环节五:反思小结,体验收获.今天你学到了什么?谈谈你的收获。再现知识,教师点评,对学生在讲堂上的积极互助,大胆思索接纳肯定,提出盼望。

        关键六:部署作业,反馈回授通过作业反馈对所学知识的掌握结果,并进一步巩牢固理,应用定理。

        以上是我对本节课的更解与阐述,不到之处,还请各位评委和老师们指正。我会继续努力,谢谢大家!

;

        作为一位不辞辛劳的人民教师,就有可能用到说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。说课稿应该怎么写呢?以下是我收集整理的关于二次函数说课稿范文,欢迎大家借鉴与参考,希望对大家有所帮助。

 二次函数说课稿1

        一、教学内容的分析

        (一)地位与作用:

        二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,面积问题与最大利润学生易于理解和接受,故而在这儿作专题讲座。目的在于让学生通过掌握求面积、利润最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积、利润最大、运动中的二次函数、综合应用三课时,本节是第一课时。

        (二)学情及学法分析

        对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。

        二、教学目标、重点、难点的确定

        对于函数知识来说它是从生活中广泛的实际问题中抽象出来的数学知识,所以它是解决实际问题中被广泛应用的工具。这部分知识的学习无论对提高学生在生活中应用函数知识的意识,还是对掌握运用函数知识的方法,都具有重要意义。

        而二次函数的知识是九年级数学学习的重要内容之一。同样它也是从生活实际问题中抽象出的知识,又是在解决实际问题时广泛应用的数学工具。课程标准强调学生的应用意识的培养,让学生面对实际问题时,能尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。

        本节课是学生在学习了二次函数的概念、图像和性质后进一步学习二次函数的应用。学生有了一定的二次函数的知识,并且在前两节课已经接触到运用二次函数的知识解决函数的最值问题,而本节课需要利用建模的思想,将实际问题转化为二次函数的问题,从而使问题得到解决。建立二次函数关系对学生而言比较困难,尤其是关注实际问题中自变量的取值范围,需要学生经历分析、讨论、对比等过程,进而得出结论。本节课的问题均来自学生的日常生活,学生会感到很有兴趣,愿意去探究。但学生基础比较薄弱,对学习数学还是有一些畏难的情绪,因此需要教师进行适当引导、分散难点。

        根据上述教学背景分析,特制订如下教学目标:

        1、知识与技能:学会将实际问转化为数学问题;学会用二次函数的知识解决有关的实际问题。

        2、过程与方法:经历实际问题转化成数学问题利用二次函数知识解决问题利用求解的结果解释问题的过程体会数学建模的思想,体会到数学来源于生活,又服务于生活。

        3、情感态度、价值观:培养学生的独立思考的能力和合作学习的精神,在动手、交流过程中培养学生的交际能力和语言表达能力,促进学生综合素质的养成。

        利用二次函数的知识对现实问题进行数学地分析,即用数学的方式表示问题以及用数学的方法解决问题,就是本节课的教学重点;由于学生理解问题的能力和知识储备情况的不同,那么从现实问题中建立二次函数模型。就是本节课的一个难点。

        新课程标准强调动手实践、自主探索与合作交流应该是学生学习数学的重要方式。教师应该是学生数学学习的组织者、引导者、合作者。同时,我认为教学方法与学习方法应该是相辅相成的不应该是割裂开来的,而且在一节课中教学方法和学习方法不可能是单一的而是多种方式方法并存的,因此根据本节课的内容和学生的实际情况,同时也为了突出本节课的重点并突破学习难点我确定本节课的教法与学法有启发法、探究法、试验法、课堂讨论法、练习法等。

        三、教学方法与手段的选择

        本节课我采用的是导学案的教法,

        创设情境、引入问题------二人小组、复习回顾------自主探究、小组合作-------板演展示、别组纠错---------教师点评、总结归纳--------课堂测评

        四、教学设计分析

        首先创设问题情境,激发学生的学习兴趣。数学课程的内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜想、验证、推理与交流。而20世纪下半叶数学的一个最大进展是它的广泛应用,数学的价值观因此发生了深刻的变化。最直接的一个结论就是数学教育要重视应用意识和应用能力的培养。数学应用意识的孕育数学建模能力的培养联系学生的日常生活并解决相关的问题等方面的要求越来越处于突出的地位。所以我以养鸡场问题、商品销售利润问题为例,提出问题,引起学生的兴趣,同时也让学生切实体会到数学来源于生活。针对学生基础比较薄弱,解题能力较差的现状,我紧接着先给出几道关于二次函数的练习题,巩固二次函数最值的求法,为后面解决实际问题扫清障碍。

        接下来就是解决最开始提出的商品何时利润最大问题,在解决商品利润问题时我先让学生做了几道关于利润的计算题,回忆一下有关利润的公式。

        由于有了前面例子的认知基础,因此引导学生考虑能否利用二次函数的知识来解决,这时学生能想到要列出函数关系式。由于获得最大利润的方式有很两种,因此采用小组合作探究的方式分组讨论实施。这是为了给学生提供充分从事数学活动的机会,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。由于学生的基础比较薄弱,因此教师作为引导者与合作者参与到学生的讨论中。这里要给学生充分的时间进行探究。在各小组充分讨论后进行全班交流,归纳出全班哪种办法求解起来最简便,作出优劣的判断。接着由所得到的结论继续提出新问题,再次体会数学来源于生活又服务于生活。

        最后是归纳总结、加深印象环节。在小结中,引导学生总结出从数学的角度解决实际问题的过程:有实际问题抽象转化成数学问题,然后运用所学的数学知识得到问题的解,再由结论反过来解释或解决新的实际问题。

        最后是课堂测评。

        对于作业的处理,针对学生的实际情况,作业分为必做题与选做题。对于基础比较薄弱的学生只需完成课堂中的巩固练习即可;对于学有余力的学生补充两道选做题。

        以上就是我对本节课的设计。提出的问题都是学生亲身的经历的情境,学生能感受到数学来源于生活,又服务于生活。而且新课标也提出为学生提供的素材应该具有现实性和趣味性,要密切联系生活实际,让学生体会到数学在生活中的作用

 二次函数说课稿2

        一、说课内容:

        人教版九年级数学下册的二次函数的概念及相关习题

        二、教材分析:

        1、教材的地位和作用

        这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解数形结合的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

        2、教学目标和要求:

        (1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

        (2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.

        (3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.

        3、教学重点:对二次函数概念的理解。

        4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

        三、教法学法设计:

        1、从创设情境入手,通过知识再现,孕伏教学过程

        2、从学生活动出发,通过以旧引新,顺势教学过程

        3、利用探索、研究手段,通过思维深入,领悟教学过程

        四、教学过程:

        (一)复习提问

        1.什么叫函数?我们之前学过了那些函数?

        (一次函数,正比例函数,反比例函数)

        2.它们的形式是怎样的?

        (y=kx+b,ky=kx ,ky= , k0)

        3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?

        设计意图复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.

        (二)引入新课

        函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

        例1、(1)圆的半径是r(cm)时,面积s (cm2)与半径之间的关系是什么?

        解:s=0)

        例2、用周长为20m的篱笆围成矩形场地,场地面积y(m2)与矩形一边长x(m)之间的关系是什么?

        解: y=x(20/2-x)=x(10-x)=-x2+10x (0

        例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?

        解: y=100(1+x)2

        =100(x2+2x+1)

        = 100x2+200x+100(0

        教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?

        设计意图通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。

        (三)讲解新课

        以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

        二次函数的定义:形如y=ax2+bx+c (a0,a, b, c为常数) 的函数叫做二次函数。

        巩固对二次函数概念的理解:

        1、强调形如,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

        2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r0)

        3、为什么二次函数定义中要求a?

        (若a=0,ax2+bx+c就不是关于x的二次多项式了)

        4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.

        5、b和c是否可以为零?

        由例1可知,b和c均可为零.

        若b=0,则y=ax2+c;

        若c=0,则y=ax2+bx;

        若b=c=0,则y=ax2.

        注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.

        设计意图这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

        判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.

        (1)y=3(x-1)2+1 (2)

        (3)s=3-2t2 (4)y=(x+3)2- x2

        (5) s=10r2 (6) y=22+2x

        (8)y=x4+2x2+1(可指出y是关于x2的二次函数)

        设计意图理论学习完二次函数的概念后,让学生在实践中感悟什么样的'函数是二次函数,将理论知识应用到实践操作中。

        (四)巩固练习

        1.已知一个直角三角形的两条直角边长的和是10cm。

        (1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;

        (2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关

        于x的函数关系式。

        设计意图此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。

        2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3。

        (1)分别写出S与x,V与x之间的函数关系式子;

        (2)这两个函数中,那个是x的二次函数?

        设计意图简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

        3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3

        (1)分别写出C关于r;V关于r的函数关系式;

        (2)两个函数中,都是二次函数吗?

        设计意图此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。

        4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围.

        设计意图此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够跳一跳,够得到。

        (五)拓展延伸

        1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式.

        设计意图在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

        2.确定下列函数中k的值

        (1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是______

        (2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______

        设计意图此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.

        (六) 小结思考:

        本节课你有哪些收获?还有什么不清楚的地方?

        设计意图让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。

        (七) 作业布置:

        必做题:

        1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?

        2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。

        选做题:

        1.已知函数 是二次函数,求m的值。

        2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象

        设计意图作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。

        五、教学设计思考

        以实现教学目标为前提

        以现代教育理论为依据

        以现代信息技术为手段

        贯穿一个原则以学生为主体的原则

        突出一个特色充分鼓励表扬的特色

        渗透一个意识应用数学的意识

 二次函数说课稿3

        一、教材分析

        1、地位和作用

        (1)二次函数是初中数学教学的重点和难点之一。二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届上海市中考试题中,二次函数都是不可缺少的内容。

        (2)二次函数的图象和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。

        (3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通。

        2、教学目标

        知识目标

        1、通过复习,掌握各类形式的二次函数解析式的求解方法和思路,能够一题多解,发散学生的思维,提高学生的创造思维能力;

        2、能运用数学思想解决有关二次函数的综合问题,帮助学生提高解决综合题的能力。

        能力目标

        提高学生对知识的整合能力和分析能力

        情感目标

        用powerpoint制作动画增加直观效果,激发学生兴趣,感受数学之美。在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

        3、教学重点与难点

        学习重点:各类形式的二次函数解析式的求解方法和思路

        学习难点:

        1、运用数学思想解决有关二次函数的综合问题

        2、运用数形结合思想,选用恰当的数学关系式解决几何问题。

        二、教学方法

        1、师生互动探究式教学,以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知欲心理和已有的认知水平开展教学,形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

        2、采用表格形式,将知识点归纳,让学生通过这个表格很容易看出二次函数与一元二次方程的联系,让学生形成以清晰、系统、完整的知识网络。

        3、运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。

        三、学法指导

        授人以鱼,不如授人以渔。在教学过程中,不但要传授学生基本知识,还要培养学生主动观察、主动思考、亲自动手、自我发现等学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发与点拨,在积极的双边活动中,学生找到了解决疑问的方法,找准解决问题的关键。

 二次函数说课稿4

        一、教材分析:

        1、教材所处的地位:

        二次函数是沪科版初中数学九年级(上册)第22章的内容,在此之前,学生在八年级已经学过了函数及一次函数的内容,对于函数已经有了初步的认识。从一次函数的学习来看,学习一种函数大致包括以下内容:通过具体实例认识这种函数;探索这种函数的图象和性质,利用这种函数解决实际问题;探索这种函数与相应方程不等式的关系。本章“二次函数”的学习也是从以上几个方面展开的。本节课的主要内容在于使学生认识并了解两个变量之间的二次函数的关系,为二次函数的后续学习奠定基础。

        2、教学目的要求:

        (1)学生经历从实际问题中抽象出两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系;

        (2)让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;

        (3)知道实际问题中存在的二次函数关系中,多自变量的取值范围的要求。

        (4)把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用。

        3、教学重点和难点

        本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点:

        重点:

        (1)二次函数的概念

        (2)能够表示简单变量之间的二次函数关系.

        难点:

        具体的分析、确定实际问题中函数关系式

        二、教法、学法分析:

        下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

        1、教法研究

        教学中教师应当暴露概念的再创造过程,鼓励学生不但要动口、动脑,而且要动手,学生经过自己亲身的实践活动,形成自己的经验、猜想,产生对结论的感知,这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会主动学习,学会研究问题的方法,培养学生的能力。本节课的设计坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

        2、学法研究

        初中学生的思维方式往往还是比较具象的,要让他们在问题的探究过程中充分体验问题的发现、解决及最终表述的方式方法,遇到困难可以和同伴、老师进行交流甚至争论,这样既可以加深学生对问题的理解又可以让学生体验获得学习的快乐。

        3、教学方式

        (1)由于本节课的内容是学生在学习了《一次函数》和《正比例函数》的基础上的加深,所以可以利用学生已有的知识在问题一、二中放手让学生先去探究探究两个问题中的变量之间的关系,在得到具体的关系式后,再引导学生观察关系式都有着什么样的特点,可以和多项式中的二次三项式或一元二次方程比较认识,并最终得出二次函数的一般式及二次项系数的取值为什么不为零的道理。

        (2)要特别提醒学生注意:二次函数是解决实际生活生产的一个很有效的模板,因而对二次函数解析式中自变量的取值范围一定要从理论上和实际中加以综合讨论和认定。

        (3)可以多让学生解决实际生活中的一些具有二次函数关系的实例来加深和提高学生对这一关系模型的理解。

        三、教学流程分析:

        这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

        1、温故知新—揭示课题

        由回顾所学过的正比例函数,一次函数入手,引入函数大家庭中还会认识那一种函数呢?再由例子打篮球投篮时篮球运动的轨迹如何?何时达到最高点?引入二次函数。

        2、自我尝试、合作探究—探求新知

        通过学生自己独立解决运用函数知识表述变量间关系,即自我探讨环节;合作探究环节,学生间互动,集群体力量,共破难关,来自主探究新知,从而通过观察,归纳得到二次函数的解析式,获取新知。

        3、小试身手—循序渐进

        本组题目是对新学的直接应用,目的在于使学生能辨认二次函数,准确指出a、b、c,并应用其定义求字母系数的值,能应用二次函数准确表示具体问题中的变量间关系。本组题目的解决以学生快速解答为主,重点对第2题分析解决方法。这一环节主要由学生处理解决,以检查学生的掌握程度。

        4、课堂回眸—归纳提高

        本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。

        5、课堂检测—测评反馈

        共有6个题目,由学生独自处理第1、2、3、4、5小题,再发表自己的看法,第6小题可由学生或独自或同组交流均可。教师多以巡视为主,注意掌握学生对本节的掌握情况。

        6、作业布置

        作业我选择“同步作业”里的题目,其中基础训练为必做题,全员均做;综合应用为选做题,可供学有余力的学生能力提升用。

        四、对本节课的一点看法

        通过引入实例,丰富学生认识,理解新知识的意义,进而摆脱其原型,从而进行更深层次的研究,这种“数学化”的方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对于学生的终身发展也有一定的作用。

       好了,今天我们就此结束对“初中数学说课稿”的讲解。希望您已经对这个主题有了更深入的认识和理解。如果您有任何问题或需要进一步的信息,请随时告诉我,我将竭诚为您服务。